2012...2015. T-Cell Lymphomas: We are illuminating the darkest of tunnels

Haemolymphopathology Units

Policlinico S.Orsola-Malpighi-Bologna **Elena Sabattini**

Istituto Oncologioco Europeo – Milano **Stefano Pileri**

introduction topic on

Histology and immune-histology of PTCL NOS

T-Cell Lymphomas in South America and Europe

Rev Bras Hematol Hemoter. 2012

Monica Bellei¹ Carlos Sergio Chiattone² Stefano Luminari¹ Emanuela Anna Pesce¹ Maria Elena Cabrera³ Carmino Antonio de Sc Raul Gabús⁵ Lucia Zoppegno⁶ Jorge Milone⁷ Astrid Pavlovsky⁸ Joseph Michael Connc Francine Mary Foss¹⁰ Steven Michael Horwit Raymond Liang¹² Silvia Montoto¹³ Stefano Aldo Pileri¹⁴ Aaron Polliack¹⁵ Iulie Marie Vose¹⁶ Pier Luigi Zinzani¹⁴ Emanuele Zucca¹⁷ Massimo Federico¹

Peripheral T-cell lymphomas are a group of rare neoplasms originating from clonal proliferation of mature post-thymic lymphocytes with different entities having specific biological characteristics

Table 2 - Histologic subtype distribution (%) according to reviewed histology of 737 cases registered in the T-cell project by geographic region								
	Overall	Europe	USA	South America	Middle/ Far East			
PTCL-NOS	38	40	42	42	26			
AITL	17	20	21	8	15			
ALCL, ALK	13	14	9	23	6			
ALCL, ALK ⁺	7	6	8	8	4			
NK/T nasal, nasal type, lymphoma/leukemia	13	6	9	13	31			
Other histologies	12	14	11	6	18			

PTCL: Peripheral T-cell lymphomas; NOS: Not otherwise specified; AITL: Angioimmunoblastic T-cell lymphoma; ALCL: Anaplastic large cell lymphomas; ALK: Anaplastic lymphoma kinase; NK: Natural killer

Table 3 - Histologic subtype distribution by country of the 317 cases registered for European sites in the T-cell project

	Ove	rall	Ita	aly	United I	Kingdom	Oth	ers *
	n	%	n	%	n	%	n	%
PTCL-NOS	127	40	99	41	19	41	9	33
AITL	63	20	47	19	10	22	6	22
ALCL, ALK	44	14	34	14	9	20	1	4
ALCL, ALK ⁺	21	6	18	8	2	4	1	4
NK/T nasal, nasal type	19	6	13	5	3	7	3	11
Enteropathy-type	22	7	17	7	2	4	3	11
Hepatosplenic	5	2	5	2	-	-	-	-
Other histologies	16	5	11	4	1	2	4	15
Subcutaneous panniculitis-like	4		3		1		-	
Peripheral γδ T-cell lymphomas	3		1		-		2	
Unclassifiable T/NK PTCLs	9		7		-		2	
Fotal	317		244		46		27	

PTCL: Peripheral T-cell lymphomas; NOS: Not otherwise specified; AITL: Angioimmunoblastic T-cell lymphoma; ALCL: Anaplastic large cell lymphomas; ALK: Anaplastic lymphoma kinase; NK: Natural killer

* Switzerland, Slovakia and Spain

(

- "NOS" category: still diagnosed on "exclusioncriteria" model
- not defined by specific immune-morphologic features

Mainly "nodal", but can be extranodal. In such cases site-specific T-cell lymphoma types should be first excluded

(B)

Comparison of Referring and Final Pathology for Patients With T-Cell Lymphoma in the National Comprehensive Cancer Network

 Alex F. Herrera, MD¹; Allison Crosby-Thompson²; Jonathan W. Friedberg, MD³; Gregory A. Abel, MD, MPH¹; Myron S. Czuczman, MD⁴; Leo I. Gordon, MD⁵; Mark S. Kaminski, MD⁶; Michael M. Millenson, MD⁷;
 Auayporn P. Nademanee, MD⁸; Joyce C. Niland, PhD⁸; Scott J. Rodig, MD, PhD⁹; Maria A. Rodriguez, MD¹⁰; Andrew D. Zelenetz, MD, PhD¹¹; and Ann S. LaCasce, MD¹

BACKGROUND: T-cell lymphomas (TCLs) are uncommon in the United States. The accurate diagnosis of TCL is challenging and requires morphologic interpretation, immunophenotyping, and molecular techniques. The authors compared pathologic diagnoses at referring centers with diagnoses from expert hematopathology review to determine concordance rates and to characterize the usefulness of second-opinion pathology review for TCL. METHODS: Patients in the National Comprehensive Cancer Network non-Hodgkin lymphoma database with peripheral TCL, not otherwise specified (PTCL-NOS), angioimmunoblastic TCL (AITL), and anaplastic lymphoma kinase (ALK)-positive and ALK-negative anaplastic large cell lymphoma (ALCL) were eligible if they had prior tissue specimens examined at a referring institution. Pathologic concordance was evaluated using available pathology and diagnostic testing reports and provider progress notes. The etiology of discordance and the potential impact on treatment were examined. **RESULTS:** Among 131 eligible patients, 57 (44%) had concordant results, totaling 64% of the 89 patients who were referred with a final diagnosis. Thirty-two patients (24%) had discordant results, representing 36% of those who were referred with a final diagnosis. The rates of discordance among patients with of PTCL-NOS, AITL, ALK-negative ALCL, and ALK-positive ALCL were 19%, 33%, 34%, and 6%, respectively. In 14 patients (44% of discordant results), pathologic reclassification could have resulted in a different therapeutic strategy. Forty-two patients (32%) were referred for classification with a provisional diagnosis. CONCLUSIONS: In a large cohort of patients with TCL who were referred to National Comprehensive Cancer Network centers, the likelihood of a concordant final diagnosis at a referring institution was low. As current and future therapies target TCL subsets, these data suggest that patients with suspected TCLs would benefit from evaluation by an expert hematopathologist. Cancer 2014;120:1993-9. © 2014 American Cancer Society.

Hartman S et al. Histopathology 2011

Lymphoepithelioid variant (Lennert lymphoma)

HRS cells

Provided with T-cell phenotype

or B-cell phenotype either complete or incomplete possibly EBV+ If CD30+-/CD15+-: dd with HD

Tan BT et al. J Molec Diagnostics 2006

B-cell clonality relatively frequent (35% cases) > correlated, in part, with the presence of a B-cell proliferation, but not with EBV

Marker Expression in Peripheral T-Cell Lymphoma: A Proposed Clinical-Pathologic Prognostic Score

Philip Went, Claudio Agostinelli, Andrea Gallamini, Pier Paolo Piccaluga, Stefano Ascani, Elena Sabattini, Francesco Bacci, Brunangelo Falini, Teresio Motta, Marco Paulli, Tullio Artusi, Milena Piccioli, Pier Luigi Zinzani, and Stefano A. Pileri

J Clin Oncol 24:2472-2479.

		गCL	AILD		
Antigen	No.	Positive (%)	No.	Positiv (%)	
Human TCR βF1	133	97	30	94	
CD2	136	70	41	100	
CD3	144	86	40	95	
CD4	135	46	38	42	
CD8	129	15	34	32	
CD5	137	20	36	19	
CD7	141	19	41	24	
CD10	143	1	43	39	
CD15	140	4	43	2	
CD30	145	3	42	0	
CD56	140	6	40	3	
CD57	143	10	42	5	
TIA-1	138	27	41	34	
GB	140	2	40	0	
ALK-C	143	0	41	0	
EBER	132	5	39	3	
Mib-1 high	138	11	40	5	
CD20	141	1	42	0	
CD79a	142	0	36	0	

CD15 positive in 5 cases (3 with CD30) CD15 + tended to a shorter survival Aberrant T-cell antigen expression in classical Hodgkin lymphoma is associated with decreased event-free survival and overall survival

Venkataraman G, Song JY, Tzankov A, Dirnhofer S, Heinze G, Kohl M, Traverse-Glehen A, Eberle FC, Hanson JC, Raffeld MA, Pittaluga S, Jaffe ES.

Blood. 2013

Iow stage (stage I/II) > nodular sclerosis

>CD4 and CD2 were most commonly expressed (TCA expression predicted shorter OS)

TRG@ PCR was negative for clonal rearrangements in 29 of 31 cases.

2/10 cases of dissected HRS cells showed monoclonal TCR

T-cell neoplasia: usually arising from paracortical areas which are expanded with visible residual follicles; usually no fibrosis;

When the perifollicular growth pattern is throughout the lymph node and there is a small cell composition: T-zone variant

1

SIE-SIES-GITMO guidelines for the management of adult peripheral T- and NK-cell lymphomas, excluding mature T-cell leukemias

P. Corradini¹, M. Marchetti², G. Barosi³, A. Billio⁴, A. Gallamini⁵, S. Pileri⁶, N. Pimpinelli⁷, G. Rossi⁸, P. L. Zinzani⁹, S. Tura¹⁰

special article

Annals of Oncology 24: 857–877, 2013 doi:10.1093/annonc/mds643 Published online 20 February 2013

ESMO Consensus conferences: guidelines on malignant lymphoma. part 2: marginal zone lymphoma, mantle cell lymphoma, peripheral T-cell lymphoma

M. Dreyling^{1*}, C. Thieblemont², A. Gallamini³, L. Arcaini⁴, E. Campo⁵, O. Hermine⁶,
J. C. Kluin-Nelemans⁷, M. Ladetto⁸, S. Le Gouill⁹, E. Iannitto¹⁰, S. Pileri¹¹,
J. Rodriguez¹², N. Schmitz¹³, A. Wotherspoon¹⁴, P. Zinzani¹⁵ & E. Zucca¹⁶

List of markers applicable to formalin-fixed, paraffinembedded tissue sections for the diagnosis of peripheral NK/ T cell lymphomas (ESMO/SIE/SIES/GITMO Guidelines).

- <u>T-cell markers: CD2, CD3, CD4, CD5, CD7, CD8, CD52, βF1, TCRγ</u>
- <u>Cytotoxic markers: TIA1, granzyme B, perforin</u>
- FTH markers: CD10, BCL6, PD1, CXCL13, SAP, ICOS, CCR5
- Treg markers: FoxP3
- NK-cell markers: CD16, CD56, CD57
- <u>Activation markers: CD25, CD30</u>
- Proliferation: MIB1/Ki-67
- <u>B-cell markers: CD20, BSAP/PAX5</u>
- Follicular dendritic cells: CD21
- Histiocytes and epithelioid elements: CD68/PG-M1
- EBV: EBER ISH, LMP1, EBNA2
- Others: CCR4, ALK, EMA, CD45

Marker Expression in Peripheral T-Cell Lymphoma: A Proposed Clinical-Pathologic Prognostic Score

Philip Went, Claudio Agostinelli, Andrea Gallamini, Pier Paolo Piccaluga, Stefano Ascani, Elena Sabattini, Francesco Bacci, Brunangelo Falini, Teresio Motta, Marco Paulli, Tullio Artusi, Milena Piccioli, Pier Luigi Zinzani, and Stefano A. Pileri J Clin Oncol 24:2472-2479.

CD3

	I	PTCL
Antigen	No.	Positive (%)
Human TCR &F1	133	97
CD2	136	70
CD3	144	86
CD4	135	46
CD8	129	15
CD5	137	20
CD7	141	19

148 PTCL, NOS on TMA

Co-expression of B-cell markers

	F	тсL		AILD		
Antigen	No.	Positive (%)	No.	Positive (%)		
Human TCR ØF1	133	97	30	94		
CD2	136	70	41	100		
CD3	144	86	40	95		
CD4	135	46	38	42		
CD8	129	15	34	32		
CD5	137	20	36	19		
CD7	141	19	41	24		
CD10	143	1	43	39		
CD15	140	4	43	2		
CD30	145	3	42	0		
CD56	140	6	40	3		
CD57	143	10	42	5		
TIA-1	138	27	41	34		
GB	140	2	40	0		
ALK-C	143	0	41	0		
EBER	132	5	39	3		
Mib-1 high	139	11	40	5		
CD20	141	1	42	0		
CD79a	142	0	36	0		
Abbreviations: EBER, Epstein-Barr virus-associated small RNAs; PTCL, pe- ripheral T-cell lymphoma; AILD, angioimmunoblastic type; TMA, tissue mi- croarray; TCR, T-cell receptor; TIA-1, T-cell intracellular antigen 1; GB, granzyme B; ALK, anaplastic large-cell lymphoma kinase.						

Blakolmer K et al. Immunoreactivity of B-cell markers (CD79a, L26) in rare cases of extranodal cytotoxic peripheral T- (NK/T-) cell lymphomas. Mod Pathol 2000; 13:766-72.

Went P et al. Marker expression in PTCL: a proposed clinico-pathologic score. JCO 2006; 24:2472-9.

Since no clonality immunoistochemical marker is available for TCLs a defective T-cell phenotype is highly indicative of a clonal T cell proliferation

Marker Expression in Peripheral T-Cell Lymphoma: A Proposed Clinical-Pathologic Prognostic Score

Philip Went, Claudio Agostinelli, Andrea Gallamini, Pier Paolo Piccaluga, Stefano Ascani, Elena Sabattini, Francesco Bacci, Brunangelo Falini, Teresio Motta, Marco Paulli, Tullio Artusi, Milena Piccioli, Pier Luigi Zinzani, and Stefano A. Pileri

J Clin Oncol 24:2472-2479. © 2006 by American Society of Clinical Oncology

Table 2. Immunophenotypic Features and EBER Expression in a PTCL/AILD TMA							
		PTCL		ALD			
Antigen	No.	Positive (%)	No.	Positive (%)			
Human TCR βF1	133	97	30	94			
CD2	136	70	41	100			
CD3	144	86	40	95			
CD4	135	46	38	42			
CD8	129	15	34	32			
CD5	137	20	36	19			
CD7	141	19	41	24			
CD10	143	1	43	39			
CD15	140	4	43	2			
CD30	145	3	42	0			
CD56	140	6	40	3			
CD57	143	10	42	5			
TIA-1	138	27	41	34			
GB	140	2	40	0			
ALK-C	143	0	41	0			
EBER	132	5	39	3			
Mib-1 high	138	11	40	5			
CD20	141	1	42	0			
CD79a	142	0	36	0			

Abbreviations: EBER, Epstein-Barr virus-associated small RNAs; PTCL, peripheral T-cell lymphoma; AILD, angioimmunoblastic type; TMA, tissue microarray; TCR, T-cell receptor; TIA-1, T-cell intracellular antigen 1; GB, granzyme B; ALK, anaplastic large-cell lymphoma kinase.

No correlation with •cytotoxic or NK markers •survival CD4+/CD8- tended to better outcome (ns)

In vivo administration of anti-CD4 antibodies!

T cell markers expression

Marker Expression in Peripheral T-Cell Lymphoma: A Proposed Clinical-Pathologic Prognostic Score

Philip Went, Claudio Agostinelli, Andrea Gallamini, Pier Paolo Piccaluga, Stefano Ascani, Elena Sabattini, Francesco Bacci, Brunangelo Falini, Teresio Motta, Marco Paulli, Tullio Artusi, Milena Piccioli, Pier Luigi Zinzani, and Stefano A. Pileri

J Clin Oncol 24:2472-2479. © 2006 by American Society of Clinical Oncology

Only 3/8 CD56+ cases were cytotox/BetaF1

Clinicopathologic and Prognostic Significance of Cytotoxic Molecule Expression in Nodal Peripheral T-Cell Lymphoma, Unspecified

Naoko Asano, MD,*§ Ritsuro Suzuki, MD,*† Yoshitoyo Kagami, MD,‡ Fumihiro Ishida, MD,§ Kunio Kitamura, MD,^{||} Hisashi Fukutani, MD,¶ Yasuo Morishima, MD,‡ Kengo Takeuchi, MD,# and Shigeo Nakamura, MD*

(Am J Surg Pathol 2005;29:1284–1293)

41 among 100 younger onset age <u>poorer performance status</u> more frequent B-symptoms higher serum LDH, <u>extranodal involvement</u> (particularly bone marrow) <u>more frequent Epstein-Barr virus integration</u> higher distribution of the IPI and PIT lower complete remission rate

Feldman A et al . Leuk 2009 Recurrent translocations involving the IRF4 oncogene locus in PTCL

2 cases PTCL-U showed t(6;14) (p25;q11.2)(IRF4 locus & TCRalpha locus) Cytotoxic phenotype, IRF4+, CD30-+ Bone marrow+, skin+, without lymphadenopathies aggressive course

Histopathology

Histopathology 2012, 61, 186–199. DOI: 10.1111/j.1365-2559.2012.04199.x

Nodal cytotoxic molecule (CM)-positive Epstein-Barr virus (EBV)-associated peripheral T cell lymphoma (PTCL): a clinicopathological study of 26 cases

Seiichi Kato, Emiko Takahashi,¹ Naoko Asano,² Tsutomu Tanaka,³ Nirmeen Megahed, Tomohiro Kinoshita⁴ & Shigeo Nakamura high CD8(+), CD56(-) pattern aggressive clinical course (median, 6.6 months) Thrombocytopenia in 11 (50%) patients & strongest prognostic indicator

CD30 expression in peripheral T-cell lymphoma

by Elena Sabattini, Marco Pizzi, Valentina Tabanelli, Pamela Baldin, Carlo Sagramoso Sacchetti, Claudio Agostinelli, Pier Luigi Zinzani, and Stefano Pileri

Haematologica 2013 [Epub ahead of print]

CD30 IHC SCORE							
	0	1+	2+	3+	4	Score ≥2+	
PTCL, NOS	31	11	18	11	16	45/87	
(87 cases)	(35.63%)	(12.64%)	(20.69%)	(12.64%)	(18.39%)	(51.72%)	
AITL	24	9	5	4		9/42	
(42 cases)	(51.14%)	(21.42%)	(11.90%)	(9.52%)	-	(21.42%)	
ENTL	2	1	3	1	3	7/10	
(10 cases)	(20.00%)	(10.00%)	(30.00%)	(10.00%)	(30.00%)	(70.00%)	
MF	13*	15**	2 [§]		2 ^{§§}	4/32	
(32 cases)	(40.63%)	(46.88%)	(6.25%)	-	(6.25%)	(12.50%)	
Transformed MF			3	6		9/9	
(9 cases)	-	-	(33.33%)	(66.67%)	-	100%	
EATL type 1			2	-	7	9/9	
(9 cases)	-	-	(22.22%)		(77,78%)	(100,00%)	
EATL type 2	3						
(3 cases)	(100%)	-	-	-	-	-	
All types	73	36	33	17	28	83/192	
(192 cases)	(38.02%)	(18.75%)	(17.18%)	(8.85%)	(14.58%)	(43.22%)	

CD30 > 75% cells: PTCL-NOS CD30pos vs ALK neg ALCL

Immunophenotype are not strictly differentiating, but no ALCL morphology;

(B) Pathological vs molecular diagnosis comparison. Substantial number of cases from PTCL-NOS were molecularly classified into WHO recognized PTCL subgroups: (i) AITL (n = 21, 14%); ALK(-)ALCL (n = 17, (ii) 11%); (iii) ATLL (n = 4, 3%); γδ-PTCL (n = 13, 9%). (iv) However, 26 AITL cases (22%) were not molecularly classifiable and

changed to PTCL-

NOS

E

ALK

Blood

CD30-positive peripheral T-cell lymphomas share molecular and phenotypic features

downregulation of

1) TCR differentiation/activation (CD52, CD69, ICOS, CD28)

- 2) Transcription factor NFATc2
- 3) Proximal TCR signaling (Lck, Itk, Fyn; ZAP70 exception)

Upregulate CD30+/ALK independent associated signature JunB+, IRF4+

ALCL associated signature pSTAT3 up & CD3 down

CD30+PTCLNOS 1) Share common features with ALCL (both ALK+/ALK-) due to a common CD30 signature 2) Cluster as a group close to ALK-ALCL

FOLLICULAR HELPER T CELL MARKERS

CXCL13, programmed cell death-1 (PD1/CD279) and inducible costimulator (ICOS), CD200, Bcl6, CD10, adaptor molecule SAP

About 25-30% of PTCL NOS cases express FTH markers without the morphological features of AITL

Some cluster with "FTH gene signature" cases; will be moved to TFH-lymphoma (Who 2016)

Gaulard P et al Semin Diagn Pathol 2011 Hartmann S et al Histopathology 2011 Zhan HQ et al J Clin Pathol 2011 Agostinelli C et al. Histopathology 2011

*found to be more robust than PIT (P = .0043) in the present series (Gutierrez-Garcia: Ann. Oncol: 2010) .

Cuadros, JCO, 2007

Went et al, JCO, 2006

EBV adverse prognostic factor

Marker Expression in Peripheral T-Cell Lymphoma: A Proposed Clinical-Pathologic Prognostic Score

Philip Went, Claudio Agostinelli, Andrea Gallamini, Pier Paolo Piccaluga, Stefano Ascani, Elena Sabattini, Francesco Bacci, Brunangelo Falini, Teresio Motta, Marco Paulli, Tullio Artusi, Milena Piccioli, Pier Luigi Zinzani, and Stefano A. Pileri

J Clin Oncol 24:2472-2479. © 2006 by American Society of Clinical Oncology

NEOPLASIA

Prognostic significance of Epstein-Barr virus in nodal peripheral T-cell lymphoma, unspecified: a Groupe d'Etude des Lymphomes de l'Adulte (GELA) study

Jehan Dupuis, Jean-François Emile, Nicolas Mounier, Christian Gisselbrecht, Nadine Martin-Garcia, Tony Petrella, Reda Bouat Françoise Berger, Alain Delmer, Bertrand Coiffier, Félix Reyes, and Philippe Gaulard

Histopathology

Histopathology 2012, 61, 186–199. DOI: 10.1111/j.1365-2559.2012.04199.x

Nodal cytotoxic molecule (CM)-positive Epstein–Barr virus (EBV)-associated peripheral T cell lymphoma (PTCL): a clinicopathological study of 26 cases

Seiichi Kato, Emiko Takahashi,¹ Naoko Asano,² Tsutomu Tanaka,³ Nirmeen Megahed, Tomohiro Kinoshita⁴ & Shigeo Nakamura high CD8(+), CD56(-) pattern aggressive clinical course (median, 6.6 months) Thrombocytopenia in 11 (50%) patients & strongest prognostic indicator

EBER in 41% cases (but few cells in most cases) 5-yr-OS 11% in positive cases

EBER in 5% cases (7/148 cases)

List of markers applicable to formalin-fixed, paraffin-embedded tissue sections for the diagnosis of peripheral NK/T cell lymphomas (ESMO/SIE/ SIES/GITMO Guidelines)

- T-cell markers: CD2, CD3, CD4, CD5, CD7, CD8, CD52, βF1, TCRγ
- Cytotoxic markers: TIA1, granzyme B, perforin
- FTH markers: CD10, BCL6, PD1, CXCL13, SAP, ICOS, CCR5
- Treg markers: FoxP3
- NK-cell markers: CD16, CD56, CD57
- Activation markers: CD25, CD30
- Proliferation: MIB1/Ki-67
- B-cell markers: CD20, BSAP/PAX5
- Follicular dendritic cells: CD21
- Histiocytes and epithelioid elements: CD68/PG-M1
- EBV: EBER ISH, LMP1, EBNA2
- Others: ALK, EMA, CD45, GATA3, TBX21, PDGFRα, VEGFR

PDGFR a and b in PTCL NOS

Piccaluga et al. Lancet Oncology 2005, Leukaemia 2014

Tyrosine kinase inhibitor PDGFRa is expressed and activated in virtually all PTCL NOS (by autocrine stimulation) and PDGFRs blockade can be an effective strategy in PTCL-U (Roncolato et al. Exper Rev Hematol 2011, Turner SD. Leukaemia 2013) as in other PTCL (Leimer D Nat Med 2012)

PTCL-DASA01 (CA180-548) "Open Label, Phase IIa Multicenter Pilot Study of Dasatinib in the Treatment of Patients with Peripheral T-Cell Lymphoma (PTCL) Relapsed/Refractory or not Amenable to Conventional Therapy" EudraCT 2013-005240-28

GATA-3 expression identifies a high-risk subset of PTCL, NOS with distinct molecular and clinical features

Tianjiao Wang,¹ Andrew L. Feldman,² David A. Wada,³ Ye Lu,¹ Avery Polk,¹ Robert Briski,¹ Kay Ristow,⁴ Thomas M. Habermann,⁴ Dafydd Thomas,⁵ Steven C. Ziesmer,⁴ Linda E. Wellik,⁴ Thomas M. Lanigan,⁶ Thomas E. Witzig,⁴ Mark R. Pittelkow,⁷ Nathanael G. Bailey,⁵ Alexandra C. Hristov,⁵ Megan S. Lim,⁵ Stephen M. Ansell,⁴ and Ryan A. Wilcox¹

Gene expression signatures delineate biologic and prognostic subgroups in peripheral T-cell lymphoma

Javeed lqbal, George Wright, Chao Wang, Andreas Rosenwald, Randy D. Gascoyne, Dennis D. Weisenburger, Timothy C. Greiner, Lynette Smith, Shuangping Guo, Ryan A. Wilcox, Bin Tean Teh, Soon Thye Lim, Soon Yong Tan, Lisa M. Rimsza, Elaine S. Jaffe, Elias Campo, Antonio Martinez, Jan Delabie, Rita M. Braziel, James R. Cook, Raymond R. Tubbs, German Ott, Eva Geissinger, Philippe Gaulard, Pier Paolo Piccaluga, Stefano A. Pileri, Wing Y. Au, Shigeo Nakamura, Masao Seto, Francoise Berger, Laurence de Leval, Joseph M. Connors, James Armitage, Julie Vose, Wing C. Chan and Louis M. Staudt T cell lineage as important factor for PTCL NOS biology TBX21/Tbet and other Th1-related transcripts GATA3 and other Th2-related transcripts (poorer prognosis)

This is what we routinely do to reach a hopefully correct diagnosis of PTCL-U

The recent molecular data published on a PTCL NOS subclassification as well as the mutational aberrancies discovered with NGS techniques will likely identify cellular pathways and additional molecules useful for both diagnosis and therapy in PTCL-U